LONG PATHS IN SPARSE RANDOM GRAPHS

Béla BOLLOBÁS

Dedicated to Tibor Gallai on his seventieth birthday

Received 8 April 1982

We consider random graphs with n labelled vertices in which edges are chosen independently and with probability c/n. We prove that almost every random graph of this kind contains a path of length $\ge (1-\alpha(c))n$ where $\alpha(c)$ is an exponentially decreasing function of c.

Given $n \in \mathbb{N}$ and $0 , the probability space <math>\mathcal{G}(n, P(\text{edge}) = p)$ consists of all graphs with a fixed set of n labelled vertices, in which the edges are chosen independently and with probability p. As customary, we say that almost every (a.e.) random graph $G_{n,p}$ has a property Q if the probability that a graph $G \in \mathcal{G}(n, P(\text{edge}) = p)$ has Q tends to 1 as $n \to \infty$.

Some important recent results in the theory of random graphs concern the existence of long paths in a.e. random graph $G_{n,c/n}$, where c is a constant. (For basic properties of graphs and random graphs see [2].) In order to formulate these results, for c>0 set

 $1-\alpha(c)=\sup{\{\alpha\in\mathbf{R}:\ a.e.\ G_{n,\,c/n}\ \text{contains a path of length at least }\alpha n\}},$

 $1-\beta(c) = \sup \{\beta \in \mathbb{R}: \text{ a.e. } G_{n,c/n} \text{ contains a cycle of length at least } \beta n \}.$

Clearly $0 \le \alpha(c) \le \beta(c) \le 1$ for every c, and $\alpha(c)$, $\beta(c)$ are decreasing functions of c.

Erdős and Rényi [3] proved that in a.e. $G_{n,1/n}$ the largest component has $O(n^{2/3})$ vertices, so $\alpha(c)=1$ for $c \le 1$. Ajtai, Komlós and Szemerédi [1] proved the somewhat surprising result that $\alpha(c)<1$ for every c>1, and de la Véga [5] showed independently that $\alpha(c) \le c_0/c$ for every c>0 and some absolute constant c_0 . Our aim is to show that this bound on $\alpha(c)$ can be replaced by an exponential function of c.

It is easily seen that $\alpha(c)$ cannot decay faster than an exponential function of c. Indeed, Erdős and Rényi [3] showed that for every c > 1 a.e. $G_{n,c/n}$ is such that the order of its largest component is asymptotically $\left\{1 - \frac{1}{c} \sum_{k=1}^{\infty} k^{k-1} (ce^{-c})^k / k!\right\} n$. Hence

$$\alpha(c) \ge \frac{1}{c} \sum_{k=1}^{\infty} k^{k-1} (ce^{-c})^k / k! \ge e^{-c}.$$

224 B. BOLLOBÁS

Theorem. For c>2 a.e. $G_{n,c/n}$ contains a cycle of length at least $(1-c^{24}e^{-c/2})n$. In particular,

$$\alpha(c) \leq \beta(c) \leq c^{24}e^{-c/2}.$$

Proof. We may assume that c>200 since if $c^{24} < e^{c/2}$, there is nothing to prove. Let $k, n \in \mathbb{N}$, k < n, and let V be a set of n labelled vertices. Denote by $\widetilde{\mathcal{G}}_{k-\text{out}}(n)$ the set of all directed graphs with vertex set V in which the outdegree of every vertex is k: $d^+(x)=k$ for every $x \in V$. Turn $\widetilde{\mathcal{G}}_{k-\text{out}}(n)$ into a probability space by giving all elements the same probability.

Given a directed graph \vec{G} , denote by $\theta(\vec{G})$ the graph having the same vertex set as \vec{G} , in which xy is an edge iff at least one of \vec{xy} and \vec{yx} is an edge of \vec{G} . Set $\mathscr{G}_{k\text{-out}}(n) = \{\theta(\vec{G}) : \vec{G} \in \mathscr{G}_{k\text{-out}}(n)\}$ and turn $\mathscr{G}_{k\text{-out}}(n)$ into a probability space by giving $G \in \mathscr{G}_{k\text{-out}}(n)$ the probability of the set $\theta^{-1}(G) \subset \mathscr{G}_{k\text{-out}}(n)$.

Our proof is based on a recent deep theorem of Fenner and Frieze [4] stating that if $k \ge 23$ then a.e. $G \in \mathcal{G}_{k-\text{out}}(n)$ is Hamiltonian. In order to make use of this result, we shall represent $\mathcal{G}(n, P(\text{edge}) = c/n)$ as the image of a space of random directed graphs.

Define r=d/n, 0 < r < 1, by

$$c/n = 2r - r^2.$$

Then clearly

$$c/2 + c^2/8n < d < c/2 + c^2/7n$$

if n is sufficiently large. Let $\mathcal{G}(n, r)$ be the probability space of directed graphs with a fixed set V of n labelled vertices in which the edges are chosen independently and with probability r. Then in $\theta(G)$ the edges are chosen independently and with probability

$$1-(1-r)^2=2r-r^2=c/n,$$

so $\{\theta(\vec{G}): \vec{G} \in \mathcal{G}(n,r)\}$, with probability inherited from $\vec{\mathcal{G}}(n,r)$, is just another representation of $\mathcal{G}(n, P(\text{edge}) = c/n)$. Hence it suffices to show that a.e. $\vec{G} \in \mathcal{G}(n,r)$ is such that $\theta(\vec{G})$ contains a cycle of length at least $(1-c^{24}e^{-c/2})n$.

We shall do this by showing that a.e. $\vec{G} \in \vec{\mathcal{G}}(n,r)$ is such that every vertex of a large set W dominates at least 23 vertices of W. Then the Fenner—Frieze theorem applied to the random graph $\vec{G}[W]$ will imply that a.e. $\vec{G} \in \vec{\mathcal{G}}(n,r)$ is such that $\theta(\vec{G})$ contains a cycle of length at least W. We shall look for an appropriate set W by omitting from V disjoint sets U_0, U_1, \ldots, U_t . The set U_0 will consist of all vertices of small outdegree (together with the vertices of too large outdegree, but this is only for the sake of convenience), then U_1 will be the set of vertices of small outdegree in $G - U_0$, and so on.

Given $x \in V$, the outdegree $d^+(x)$ of x in a random directed graph $\vec{G}_{n,r}$ has binomial distribution with parameters n-1 and r=d/n. Let us estimate $P(d^+(x) \le 24)$ and $P(d^+(x) \ge 6d)$. Since c > 104, if n is sufficiently large then

$$(1-d/n)^{n-1-i} < \exp\left\{-d+25 d/n\right\} < \exp\left\{-c/2-c^2/8n+13c/n\right\} < e^{-c/2}$$

for i < 25. Consequently

$$P(d^+(x) \le 24) = \sum_{i=0}^{24} {n-1 \choose i} \left(\frac{d}{n}\right)^i (1 - d/n)^{n-1-i} < e^{-c/2} \sum_{i=0}^{24} (c/2)^i / i!.$$

Also,

$$P(d^+(x) \ge 6d) < \sum_{i=\lceil 6d \rceil}^{n-1} {n-1 \choose i} \left(\frac{d}{n}\right)^i < \sum_{i=\lceil 6d \rceil}^{\infty} d^i/i! < \sum_{i=\lceil 6d \rceil}^{\infty} (e/6)^i < e^{-c}.$$

For $\vec{G} \in \vec{\mathcal{G}}(n,r)$ let

$$U_0 = U_0(\vec{G}) = \{x \in V : d^+(x) \le 24 \text{ or } d^+(x) \ge 6d\}.$$

Then $|U_0|$ has binomial distribution with parameters n and p, where p=p(n) satisfies

$$p < e^{-c} + e^{-c/2} \sum_{i=0}^{24} (c/2)^i / i! = p_0.$$

Let us note the following simple property of the binomial distribution $S_{n,p}$ with parameters n and p: if $0 and <math>(pn)^{-1/2} < \varepsilon \le 1/2$ then

(1)
$$P(|S_{n,n}-pn| \ge \varepsilon pn) < e^{-\varepsilon^2 pn/3}.$$

By applying (1) we find that

$$P\left(|U_0| \ge \frac{3}{2} p_0 n\right) < e^{-p_0 n/12} = P_0.$$

Now let us define disjoint sets $U_1, U_2, ...$, all functions of a random directed graph $\vec{G} \in \vec{\mathscr{G}}(n, r)$, as follows. Suppose $i \ge 1$ and we have defined $U_0, U_1, ..., U_{i-1}$. Set

$$U_i = \left\{ x \in V - \bigcup_{i=0}^{i-1} U_j \colon \left| \Gamma_+(x) \cap \bigcup_{i=0}^{i-1} U_j \right| \ge 2 \right\},\,$$

where

$$\Gamma_+(x) = \{ y \in V \colon \vec{xy} \in \vec{E}(\vec{G}) \}.$$

Let
$$D = 9d^2$$
, $t = \left[\frac{2}{3} \log n / \log (1/Dp_0) \right]$ and

$$p_i = D^j p_0^{j+1}, \quad j = 1, 2, ..., t.$$

It can be checked that the assumptions we have made imply that $Dp_0 < 1/4$ and so $p_j < 4^{-j-1}$, j=0, 1, ..., t. We shall show that the probability that $|U_j| \ge \frac{3}{2} p_j n$,

226 B. BOLLOBÁS

conditional on $|U_i| \le \frac{3}{2} p_i n$, i = 0, 1, ..., j-1, is rather small. To be precise,

(2)
$$P\left(|U_j| \ge \frac{3}{2} p_j n \, \middle| \, |U_i| \le \frac{3}{2} p_i n, \quad i = 0, 1, ..., j-1\right) \le e^{-p_j n/12} = P_j,$$

$$j = 1, 2, ..., t.$$

In order to prove (2), consider disjoint sets $V_0, V_1, ..., V_{j-1}$ of V satisfying

$$v_i = |V_i| \le \frac{3}{2} p_i n, \quad i = 0, 1, ..., j-1.$$

Let $x_0 \in V - \bigcup_{i=0}^{j-1} V_i$. We claim that

(3)
$$P\left(\left|\Gamma_{+}(x_{0})\cap\bigcup_{i=0}^{j-1}V_{i}\right|\geq2\left|U_{i}=V_{i},\quad i=0,\,1,\,...,\,j-1\right)\leq p_{j},\right)$$

j=1, 2, ..., t. Note that, by (1), inequality (3) implies (2), so it suffices to prove (3). First consider j=1. Since $P(x \in U_0) < 1/2$,

$$\begin{split} P(|\Gamma_{+}(x_{0}) \cap V_{0}| &\geq 2 \left| U_{0} = V_{0} \right) \leq 2 \sum_{i=25}^{\lfloor 6d \rfloor} \sum_{k=2}^{i} \binom{v_{0}}{k} \binom{n-1-v_{0}}{i-k} r^{i} (1-r)^{n-1-i} \\ &\leq 3 \sum_{i=25}^{\lfloor 6d \rfloor} \sum_{k=2}^{i} \left(\frac{3}{2} p_{0} \right)^{k} \frac{d^{i}}{k! (i-k)!} e^{-d} \leq 3 e^{-d} \sum_{k=2}^{\lfloor 6d \rfloor} \frac{(3p_{0} d/2)^{k}}{k!} \sum_{i=k}^{\infty} d^{i-k} / (i-k)! \leq 5 d^{2} p_{0}^{2} < p_{1}. \end{split}$$

The last but one inequality above holds because $p_0 d < 1/5$.

Now assume that $2 \le j \le t$ and we have proved (3) and (2) for smaller values of j. If a vertex x belongs to U_j then x dominates at least one vertex of U_{j-1} and at least two vertices of $\bigcup_{i=0}^{j-1} U_i$. Taking into account that $\frac{3}{2} \sum_{i=0}^{j-1} p_i < 2p_0 < 1/2$, we find that for $x_0 \notin \bigcup_{i=0}^{j-1} V_i$

$$\begin{split} &P\left(\left|\Gamma_{+}(x_{0})\bigcap\bigcup_{i=0}^{j-1}U_{i}\right|\geq2\left|U_{i}=V_{i},\quad i=0,1,...,j-1\right)\leq\\ &\leq2\sum_{k=25}^{\lfloor 6d\rfloor}v_{j-1}\sum_{i=0}^{j-1}v_{i}\binom{n-2}{k-2}r^{k}(1-r)^{n-1-k}\leq\\ &\leq3\sum_{k=25}^{\lfloor 6d\rfloor}\left(\frac{3}{2}p_{j-1}\right)(2p_{0})\frac{d^{k}}{(k-2)!}e^{-d}\leq9d^{2}p_{0}p_{j-1}=p_{j}. \end{split}$$

This proves (3) and so (2).

The set $\bigcup_{i=0}^{r} U_i$ will not always do for the set U = V - W of exceptional vertices.

Set

$$U = \left\{ x \in V - \bigcup_{j=1}^{t} U_j \colon |\Gamma_+(x) \cap U_t| \ge 2 \right\}.$$

Let us estimate the probability of U being large, conditional on U_0, U_1, \ldots, U_t being not too large. As before, consider disjoint sets V_0, V_1, \ldots, V_t of V satisfying

$$v_j = |V_j| \le \frac{3}{2} p_j n, \quad j = 0, 1, ..., t.$$

Then for $x_0 \in V - \bigcup_{i=0}^t V_i$

$$P(|\Gamma_{+}(x_0) \cap V_t| \ge 2 |U_i = V_i, \quad i = 0, 1, ..., t) \le$$

$$\leq 2 \sum_{i=25}^{\lfloor 6d \rfloor} {v_t \choose 2} {n-2 \choose i-2} r^i (1-r)^{n-1-i} \leq 2d^2 p_t^2 \leq (Dp_0)^{2(t+1)} \leq n^{-4/3}.$$

Hence

$$(4) P\left(\widetilde{U}\neq\emptyset\big||U_i|\leq\frac{3}{2}p_in, \quad i=0,1,...,t\right)\leq n^{-1/3}.$$

Putting together (2) and (4) we find that

$$P(|U_j| \le \frac{3}{2}p_j n, \quad j = 0, 1, ...t, \text{ and } \widetilde{U} = \emptyset) \ge 1 - \sum_{i=0}^t P_j - n^{-1/3} = 1 - o(1).$$

Now let W be a set of maximum cardinality for which

$$|\Gamma_+(x)\cap W|\geq 23$$

for every $x \in V - W$. If $\widetilde{U} = \emptyset$ then the set $V - \bigcup_{j=0}^{t} U_j$ will do for W since a vertex not in $\bigcup_{j=0}^{t} U_j$ dominates at most one vertex in U_t and at most one vertex in $\bigcup_{j=0}^{t-1} U_j$, so it dominates at least 25-2=23 vertices in $V - \bigcup_{j=0}^{t} U_j$.

Consequently

$$P(|W| \ge (1-2p_0)n) \ge P(|U_j| \le \frac{3}{2}p_j n, \quad j=0,...,t, \text{ and } \widetilde{U}=\emptyset) = 1-o(1).$$

Having found this large set W the proof is almost complete. Indeed, if W_0 is a fixed set of vertices with $|W_0| \ge (1-2p_0)n$ then

$$P(\theta(\vec{G})[W])$$
 is Hamiltonian $|W = W_0| = 1 - o(1)$.

Consequently a.e. $\vec{G} \in \mathcal{G}(n, r)$ is such that $\theta(\vec{G})$ contains a cycle of length at least $(1-2p_0)n$.

Note that in the proof we were very generous in our estimate of p_0 . This is because the correct upper bound for $\beta(c)$ will be c_1ce^{-c} where c_1 is an absolute constant. We shall return to this in a later note.

References

- [1] M. AJTAI, J. KOMLÓS and E. SZEMERÉDI, The longest path in a random graph, Combinatorica 1 (1981) 1—12.
- [2] B. Bollobás, Graph Theory An Introductory Course, Graduate Texts in Mathematics, Springer-Verlag, New York, Heidelberg and Berlin, 1979.
- [3] P. Erdős and A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci. 5 (1960) 17—61.
- [4] T. I. Fenner and A. M. Frieze, On the existence of hamiltonian cycles in a class of random graphs, to appear.
- [5] W. F. DE LA VÉGA, Long paths in random graphs, Combinatorica 3 (1983)

Béla Bollobás

Department of Pure Mathematics and Mathematical Statistics University of Cambridge Cambridge CB2 1SB, U.K.

Department of Mathematics Louisiana State University Baton Rouge, LA 70803, U.S.A.